Retake test 2 Numerical Mathematics 2 February, 2022

Duration: One hour.

In front of the questions one finds the points. The sum of the points plus 1 gives the end mark of this test. Use of a calculator is allowed.

1. Consider the 100×100 matrix

$$
A=\left[\begin{array}{cccccc}
-1 & 101 & & & & \\
-99 & -2 & 101 & & & \\
& -99 & -2 & 101 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -99 & -2 & 101 \\
& & & & -99 & -2
\end{array}\right]
$$

(a) $[0.5]$ Show that A is irreducible.
(b) [1.5] Write A as the sum of a symmetric and a skew-symmetric matrix. Consider the symmetric part and localize its eigenvalues by the Gershgorin theorems. And similar for the skew-symmetric part of A
(c) $[0.5]$ According to Bendixson's theorem where are the eigenvalues of A located in the complex plane based on the results in the previous part?
2. (a) [1.0] Describe the QR-method when applied to a matrix A. To what type of matrix does the sequence $\left\{A^{(n)}\right\}$ converge? What can be said about the ordering of the eigenvalues in the result and the speed of convergence?
(b) [1.0] To speedup the convergence of the QR-method one uses a shift. How is the shift chosen in general and why does it improve the convergence?
(c) $[2.0]$ Determine the Householder matrix that transforms the vector $[1,-\sqrt{3}]^{T}$ in a vector of the shape $[*, 0]^{T}$ where $*$ is a nonzero number. It is enough to find the vector v that defines the Householder matrix and indicate how it defines the matrix. Explain the advantages of using v instead of H when computing $H x$ for general x (look at both storage and computing effort).
(d) [1.5] Explain how the Householder matrix derived in the previous part can be used to bring the matrix

$$
A=\left[\begin{array}{ccc}
-1 & 1 & \sqrt{5} \\
-1 & -2 & 6 \\
\sqrt{3} & -4 & -7
\end{array}\right]
$$

in Hessenberg form using a similarity transformation.
(e) [1.0] For general matrices, the transformation of a matrix to Hessenberg form, as in part b, is used as a preprocessing step for the QR-method. Explain why applying the QR method to a matrix of Hessenberg form is advantageous compared to applying it to a general (dense) matrix A.

